
Week 10 - Monday

 What did we talk about last time?
 Reading and writing binary files
 Serialization

 An object has data inside of it
 Each piece of data is either a reference to an object or is

primitive data
 When reading or writing whole objects, we could read or write

each piece of data separately
 But doing so is challenging because we could forget some

data
 And because there could be circular references:
 Object A might have a reference to object B which might have a

reference to object A again…

 Serialization takes a reference to an object and dumps it into a
file

 It writes representations to primitive types pretty much the
same way that a DataOutputStream does

 And if there're objects inside of the object you're serializing, it
serializes them too

 And! Serialization makes a note of all the objects that are
getting serialized, so if it sees an object a second time, it just
writes down a serial number for it instead of the whole thing

 Here's a class we might want to be able to dump into a file

public class Troll implements Serializable {
private String name;
private int age;
private Object hatedThing; // All trolls hate something
public Troll(String name, int age, Object hatedThing) {

this.name = name;
this.age = age;
this.hatedThing = hatedThing;

}
public Object getHatedThing() {

return hatedThing;
}

}

 Here's some code that creates a couple of Troll objects and
then writes them to a file called trolls.dat

Troll tom = new Troll("Tom", 351, "Bilbo Baggins");
Troll bert = new Troll("Bert", 417, tom);
ObjectOutputStream out = null;
try {

out = new ObjectOutputStream(new FileOutputStream("trolls.dat"));
out.writeObject(tom);
out.writeObject(bert);

}
catch(IOException e) {

System.out.println("Serialization failed.");
}
finally { try{ out.close(); } catch(Exception e){} }

 Here's some code that reads in the Troll objects we
serialized in the previous example

Troll tom = null;
Troll bert = null;
ObjectInputStream in = null;
try {

in = new ObjectInputStream(new FileInputStream("trolls.dat"));
tom = (Troll)in.readObject();
bert = (Troll)in.readObject();

}
catch(IOException e) {

System.out.println("Deserialization failed.");
}
finally { try{ in.close(); } catch(Exception e){} }

 Serialization allows you to read or write objects (even
complex objects) or arrays of objects in a single line of code

 It's an impressive achievement of Java
 To make your own classes serializable, all you have to do is

mark them with the Serializable interface
 An interface with no methods!

 It more or less works like magic!

 Some objects are not serializable, but they are comparatively
rare

 An example is the Thread class, which encapsulates the
state of a currently running thread…so how could you store it
on disk?

 Serialization does have storage overhead needed to keep
track of the size of arrays and type information about classes
 You might be able to use less space if you stored the data directly

 If you forget to mark one of your classes Serializable, it
will crash your code when you try to write it out, even
indirectly

 If you serialize objects to a file but later change the class,
adding or removing members or methods, you will no longer
be able to read those objects back from the file

 Their data in the file will no longer match what the class is
supposed to look like

 This problem can happen with different versions of the same
program

 The network of hardware and software systems that connects many of the
world's computers

 Typically, people say the Internet and capitalize the "I" because there is only one
 Until we meet aliens
 Or decide to break off from the rest of the world

 The World Wide Web is the part of the Internet that is concerned with
webpages

 The Internet also includes:
 FTP
 VOIP
 Bittorrent
 Multiplayer video games
 Much, much more…

 The Internet is a packet switched system
 Individual pieces of data (called packets) are sent on the

network
 Each packet knows where it is going
 A collection of packets going from point A to point B might not all

travel the same route
C

BA

D

12

 Traditionally, phone lines have been circuit switched
 A specific circuit is set up for a specific communication
 Operators used to do this by hand
 Now it is done automatically
 Only one path for data

C BA1

 Which one is faster?
 Circuit switching

 Which one is more predictable?
 Circuit switching

 So, why is the Internet packet
switched?
 More adaptable

 The Advanced Research Projects
Agency was created in 1958 to
respond to the Russians
launching Sputnik

 The ARPANET connected its first
two major nodes over 10 years
later

 Packet switching was used so
that the network could still
communicate after a nuclear
strike

 Computers on the Internet have addresses, not names
 Google.com is actually [74.125.67.100]
 Google.com is called a domain
 The Domain Name System or DNS turns the name into an

address

 Old-style IP addresses are in this form:
 74.125.67.100

 4 numbers between 0 and 255, separated by dots
 That's a total of 2564 = 4,294,967,296 addresses
 But there are 7 billion people on earth…

 IPv6 are the new IP addresses that are beginning to be used
by modern hardware
 8 groups of 4 hexadecimal digits each
 2001:0db8:85a3:0000:0000:8a2e:0370:7334

 1 hexadecimal digit has 16 possibilities
 How many different addresses is this?
 1632 = 2128 ≈ 3.4×1038 is enough to have 500 trillion addresses for

every cell of every person's body on Earth
 Will it be enough?!

 Y2K bug
 2 bytes for the date is not enough
 It's all just going to get messed up in Y10K

 Y2038 bug
 Unix and Linux machines often use a signed 32-bit integer to

represent seconds since January 1, 1970
 Zip codes
 Vehicle identification numbers

 You can build layers of I/O on top of other layers
 System.out.println() is built on top of low-level calls,

eventually some C system call to the OS
 One standard networking model is called the Open Systems

Interconnection Reference Model
 Also called the OSI model
 Or the 7 layer model

 There are many different
communication protocols

 The OSI reference model is an
idealized model of how different
parts of communication can be
abstracted into 7 layers

 Imagine that each layer is talking
to another parallel layer called a
peer on another computer

 Only the physical layer is a real
connection between the two

Application

Presentation

Session

Transport

Network

Data Link

Physical

 Not every layer is always used
 Sometimes user errors are referred to as Layer 8 problems
Layer Name Mnemonic Activity Example

7 Application Away User-level data HTTP

6 Presentation Pretzels Data appearance, some encryption SSL

5 Session Salty Sessions, sequencing, recovery IPC and part of TCP

4 Transport Throw Flow control, end-to-end error detection TCP

3 Network Not Routing, blocking into packets IP

2 Data Link Dare
Data delivery, packets into frames,
transmission error recovery

Ethernet

1 Physical Programmers Physical communication, bit transmission Electrons in copper

 There is where the rubber meets the road
 The actual protocols for exchanging bits as electronic signals

happen at the physical layer
 At this level are things like RJ45 jacks and rules for

interpreting voltages sent over copper
 Or light pulses over fiber

 Ethernet is the most widely used example of the data layer
 Machines at this layer are identified by a 48-bit Media Access

Control (MAC) address
 The Address Resolution Protocol (ARP) can be used for one

machine to ask another for its MAC address
 Some routers allow a MAC address to be spoofed, but MAC

addresses are intended to be unique and unchanging for a
particular piece of hardware

 The most common network layer protocol is Internet Protocol
(IP)

 Each computer connected to the Internet should have a
unique IP address
 IPv4 is 32 bits written as four numbers from 0 – 255, separated by

dots
 IPv6 is 128 bits written as 8 groups of 4 hexadecimal digits

 We can use tracert on Windows to see the path of hosts
leading to some IP address

 There are two popular possibilities for the transport layer
 Transmission Control Protocol (TCP) provides reliability
 Sequence numbers for out of order packets
 Retransmission for packets that never arrive

 User Datagram Protocol (UDP) is simpler
 Packets can arrive out of order or never show up
 Many online games use UDP because speed is more important

 This layer doesn't necessarily exist in the TCP/IP model
 Transport Layer Security (TLS) uses the session layer
 TLS is the end-to-end encryption that HTTPS uses
 You know you're using TLS if there's a little lock showing on

your browser
 Google is pushing for all websites to be HTTPS
 HTTPS is safer, but there's some overhead for the encryption,

and websites have to have certificates for their public keys

 The presentation layer is often optional
 It specifies how the data should appear
 This layer is responsible for character encoding (ASCII, UTF-8,

etc.)
 MIME types are sometimes considered presentation layer

issues

 This is where the data is interpreted and used
 HTTP is an example of an application layer protocol
 A web browser takes the information delivered via HTTP and

renders it
 Code you write deals significantly with the application layer

 The goal of the OSI model is to make lower layers transparent to upper ones

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

MAC IP UDP Payload

IP UDP Payload

UDP Payload

Payload

Payload

Payload

 Seven layers is a lot to remember
 Mnemonics have been developed to help

Application All All A Away

Presentation Pros People Powered-Down Pretzels

Session Search Seem System Salty

Transport Top To Transmits Throw

Network Notch Need No Not

Data Link Donut Data Data Dare

Physical Places Processing Packets Programmers

 The OSI model is sort of a sham
 It was invented after the Internet was already in use
 You don't need all layers
 Some people think this categorization is not useful

 Most network communication uses TCP/IP
 We can view TCP/IP as four layers:

Layer Action Responsibilities Protocol

Application Prepare messages User interaction HTTP, FTP, etc.

Transport Convert messages to packets
Sequencing, reliability, error
correction

TCP or UDP

Internet Convert packets to datagrams Flow control, routing IP

Physical Transmit datagrams as bits Data communication

 A TCP/IP connection between two hosts (computers) is
defined by four things
 Source IP
 Source port
 Destination IP
 Destination port

 One machine can be connected to many other machines, but
the port numbers keep the different connections straight

 Certain kinds of network communication are usually done on
specific ports
 20 and 21: File Transfer Protocol (FTP)
 22: Secure Shell (SSH)
 23: Telnet
 25: Simple Mail Transfer Protocol (SMTP)
 53: Domain Name System (DNS) service
 80: Hypertext Transfer Protocol (HTTP)
 110: Post Office Protocol (POP3)
 443: HTTP Secure (HTTPS)

 Socket communication

 Work on Project 3
 Project 3 is now due on April 3

 Keep reading Chapter 21

	COMP 2000
	Last time
	Questions?
	Project 3
	Reading and Writing Whole Objects
	What if I wanted to read or write a whole object?
	Serialization
	Example Serializable class
	Example of writing
	Example of reading
	The good
	The bad
	The ugly
	Internet
	Slide Number 15
	What is the Internet?
	Packet switched
	Circuit switched
	Circuit vs. packet switching
	Birth of the Internet
	IP addresses
	IPv4
	IPv6
	Other failures in design
	Networking
	OSI seven layer model
	Protocols
	Layers
	Physical layer
	Data link layer
	Network layer
	Transport layer
	Session layer
	Presentation layer
	Application layer
	Transparency
	Mnemonics
	TCP/IP
	TCP/IP
	Common port numbers
	Upcoming
	Next time…
	Reminders

